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DETACHMENT SIZE OF BUBBLES DURING QUASISTATIC
GROWTH ON HEATER

Yu. A. Kirichenko, L. A. Slobozhanin, UDC 532.65:536.423.1
and N. S. Shcherbakova

The critical bubhle dimensions for detachment from a smooth surface and from the edge of a
recess are calculated. The boundary of the quasistatic regime is estimated on the basis of the
pressure.

One of the most important problems in the physics of boiling is that of determining the size of vapor
bubbles as they detach from the heater. The detachment size and the nature of the detachment depend on the
magnitude of the inertial forces in comparison with the forces due to gravity and surface tension. The inertial
forces are governed primarily by the rate of growth of the bubble surface area and are proportional to g4 [1].
Since g in turn is proportional to the m-th power of the Jacobi number (0.5 = m = 1) [2], and the Jacobi num-
ber is inversely proportional to p", at high pressures the rapid increase in p" causes g* to become extremely
small. Under these conditions we can neglect the influence of inertial forces on the bubble detachment. The
bubble growth is assumed to be quasistatic, and the detachment is assumed to begin at the instant the equilibri-
um free surface of the liquid becomes unstable. '

Despite the importance of the problem of the detachment of bubbles during boiling, it has received little
study, even in the case of quasistatic bubble growth. The average detachment radius rq = (3vd/4w)1/3 is usually
estimated from the equation [3]

r, =001 l/ o
! (o—0")g
This equation was derived by Fritz [4] for a bubble sitting on a smooth horizontal plate; Fritz determined vgq
as the maximum bubble volume (for a given value of ¢) and used the tables of Bashforth and Adams [5] to con~
struct the function Vg () for 6 = 59° (Vg = vdb3/2). We note that Eq. (1) becomes unacceptably inaccurate at
6 > 125°, according to the results of [4]. Furthermore, the applicability of (1) for 4 < 59° has yet to be proved.

8 (r,20.0156-1/20; b= (p— ") g/o). 1)

Nesis and Komarov [6] proposed an approximate analytic solution of this problem for small 6 on the basis
of a study of the behavior of the base radius X as a function of the bubble height h. They asserted that for ¢ <
70° the condition dX /dh = —«< becomes satisfied upon the appearance of an inflection point of the generatrix
of the bubble surface at the base; this condition was adopted as the stability threshold. Analytic and numerical
calculations in [10] showed that the inflection point does not coincide with the point at which we have dX /dh =
—<«, Furthermore, the satisfaction of the condition dX /dh = ~« cannot be judged a rigorous criterion for the
loss of stability; as follows from a numerical solution of the variational problem, the instability occurs upon
the appearance of an inflection point on the profile, but before the time at which the condition dX /dh = —«
becomes satisfied [10, 14].

For liquids with very small wetting angles (e.g., for cryogenic liguids, for which ¢ ~ 0°). Eq. (1) pre-
dicts values of rg which are far too low. It is reasonable to assume that the vapor bubble does not detach from
the smooth wall of the heater but from the edge of a microscopic recess [1]. The most likely place for the
nucleation of a bubble is at the bottom of a microscopic recess. As the bubble grows, the base of the bubble
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(more precisely, the wetting line, i.e., the line of intersection of the free surface with the heater) moves
along the lateral surface of the recess [7]. The shape of the microscopic recess (the most realistic model is
a conical surface [7]) is important only for the nucleation and growth of the bubble within the recess. Using
the methods and results of [8], we can easily reach the conclusion that the detachment of a bubble from a
lateral surface of a cone with the very small base corresponding to real microscopic recesses is impossible.
(According to estimates in [9], the size of microscopic recesses is on the order of 1-100 u.) At a certain in-
stant, accordingly, the bubble must settle on the edge of the microscopic recess (Fig. 1b), After this ocecurs
(Fig. 1c), the bubble shape changes in different manners, depending on the ratio of # and Ry, Ry = ry X
v{p —p™g /0). The detachment can occur either from a smooth wall or from the edge of the recess [10].

Buevich and Butkov [11] took up the problem of finding the critical volume of a bubble which detaches
from the edge of an aperture (the bubble volume in this case was taken to be the volume founded by the free
surface and the horizontal plane of the aperture), Working by analogy with [4], they determined the detachment
volume as the maximum volume for the equilibrium states of the bubble, for which the wetting line hag a fixed
radius r;, equal to the aperture radius. They constructed the function Vg(R,) for Ry =< 2.5,

It should be noted here that the method used by Fritz leads to a correct solution of the problem he
dealt with, since in this case only the axisymmetric perturbations leading to bubble detachment are important
[81, and the instant at which these perturbations cause instability coincides with the instant at which the bubble
reaches its maximum volume (for a given value of §; this result was shown rigorously in {12]). At the same
time, the method used by Buevich and Butkov [11] is valid only for R, = 3.24, at which axisymmetric perturba-
tions are dangerous, and this method leads to incorrect results if 3.24 < Ry = 3.83, in which case the instabil-
ity due to nonaxisymmetric perturbations occurs earlier [10] (if Ry > 3.83, the bubble is always unstable).

Furthermore, the approximation of the results by the function V4 = 0.65R, used in [11] is clearly er~
roneous.

Slobozhanin and Tyuptsov [10] numerically determined the bubble shape during slow growth up to the in-
stant at which detachment begins, and they found the detachment volume (we emphasize that "detachment vol-
ume" here, as in [4, 11], is understood to be —not the volume of the bubble after it has detached — but the vol-
ume of the bubble at the beginning of detachment, i.e., at the instant at which the instability occurs; the volume
after detachment probably cannot he found exactly without solving the dynamic problem). They dealt with the
cases of a smooth horizontal plate (Fig. 1a) and a plate having a circular aperture (Fig. 1c). For the second
case they analyzed the conditions under which the detachment occurs from the smooth surface and from the
edge of the aperture. In solving the detachment problem they used the methods of [8, 13, 14]. They constructed
the functions Vg (R,) for detachment from the edge of the aperture and Vg () for detachment from the smooth
surface.

In the present paper we calculate the interval of small wetting angles and aperture radii given roughly
in [10], and we find simple equations to approximate the numerical results found in the present paper and,
partially, in [10]. Then it becomes possible to determine the detachment sizes of bubbles for various liquids
(including cryogenic liquids) by adopting as a model for a flat heater surface a plate with a circular aperture,

. Furthermore, we use the pressure to estimate the boundary between the quasistatic and dynamic regimes for
bubble growth and detachment.

We introduce a cylindrical coordinate system r, ¢, z with origin at the crest of the bubble and with z
axis pointing downward, along the direction of the gravitational force (Fig. 1). By virtue of the axial symmetry
of the problem, in order to determine the bubble shape at some instant it is sufficient to determine the shape
of the generatrix — the line of intersection of the bubble surface with the ¢ = const half-plane. We call this
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Fig. 2. Dimensionless bubble detachment radius Ry as a function of the
wetting angle ¢°,

Fig. 3. Dimensionless detachment radius Ry as a function of the di-
mensionless radius of the recess, R,

generatrix the "equilibrium line" (Fig. 1). Transforming to dimensionless variables, we find that the equi-
libriurm line is described in the parametric form R(S), Z(S) by the system of equations [8]

R'=—Z'(—Z+C—2Z'|R), Z"=R'(—Z +-C—Z'|R), (' =dldS) : 2)
with the inertial conditions
R(O=Z(0)=2'(0)="0, R"(0) = 1. (3)

The solutions of problem (2), (3) form a single-parameter family of integral curves (the parameter is the
quantity C). The equilibrium line is governed not only by the value of the parameter C, which governs the shape
of the integral curve, but also hy the position of the final point S = S; and the point of contact on this curve, A
(Fig. 1). These two quantities, which are not known at the outset, can be found from the condition for a given
bubble volume (at a given instant) and from the condition for a given wetting angle,

Y(S) =mn—8, )
if the bubble is sitting on a smooth surface, or from the condition
‘ R(S)=R,, )
if the bubble is in contact with the edge of an aperture,

The bubble can be in contact with the edge of the aperture only if [13]
P(S) <a—o. 6)

To study the stability of the bubble we begin with the principle of a minimum potential energy of the system.
The problem reduces to one of determining the sign of the smallest eigenvalue of a linear boundary-value prob- |
lem for the normal component N (S, o) of the perturbations of the free surface {8, 14]. The coefficients in this
problem depend on the shape of the bubble surface (and, of course, on the physical properties determining
the equilibrium).

The boundary conditions for this problem take different forms, depending on whether the bubble is in
contact with a smooth wall or with the edge of an aperture: in the first case, the boundary condition expresses
the conservation of the wetting angle during tolerable perturbations; in the second case, it expresses the con~
servation of the contact line at the edge of the aperture. Accordingly, the detachment volumes will be different
in these two cases.

Using the specified procedure, we numerically determined the detachment sizes for bubbles in contact
with the smooth surface of a plate for small wetting angles (the extreme value was § = 3°). On the basis of these
results and the results of [10] we were then able to construct the function Rq () shown in Fig. 2. Comparison
of this function with Eq. (1) shows that over the interval 3° < ¢ =< 125° Eq. (1) approximates the exact results
within a relative error no larger than 5%. In the same interval of wetting angles, this function is described
more accurately (within 1.5%) by

R, = 0.01069(rd — 0.01060 l/#—p)) . (1)
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Fig. 4. Boundary between the two detachment regimes.
1) Detachment from smooth surface; 2) detachment from
edge of recess.

Fig. 5. The part of the boundary in Fig. 4 for small val-
ues of Ry and 6. '

Furthermore, for the case of detachment from the edge of a recess we numerically found the detachment di-
mensions for small values of R (the smallest value of R, for which calculations were carried out was 1.8-
107%). Figure 3 shows the function R4qRy), in the plotting of which we also used the results of [10].

Over the interval 1.8-107 < Ry = 0.5 this function can be approximated by

Rd:l.losVie_o(rd=1.105 ‘3/—’2'5—*) ®)
» glo—p")

The error of this approximation is less than 2.5%.

How does a bubble detach from a heater with a recess — from the smooth surface or from the edge of the
recess? Figure 4 gives us an answer to this question. In this figure, the boundary between the region of physi-
cal parameters in which the detachment occurs from the edge of the recess, 2, and the region in which de-
tachment occurs from the smooth surface, 1, is shown on the (R, ¢) plane. Figure 5 shows the part of the
boundary for small values of R, and §, which is a particularly interesting situation.

We see, in particular, from these figures that for cryogenic liquids, with extremely small wetting
angles, Egs. (1) and (7) are inapplicable, since in these cases we are dealing with detachment from micro-
scopic recesses. (This assertion is confirmed by the experimental results of [15], which showed that we have
rq~ g'1/3 for liquid oxygen, in agreement with Eq. (8).)

These results can be used to analyze boiling if we know the average radius of the microscopic recess, ry.
and if we have determined the boundary of the quasistatic regime for the detachment of vapor bubbles during
bubble boiling. For definiteness we assume that the radii of the active vapor-formation centers, ry, are equal
to their most probable value [16]:
40T,

Lo"AT

o= (9)
The boundary between the quasistatic and dynamic detachment regimes can be determined by comparing the
surface-tension force, which can be written (within accuracy sufficient for our purposes) as F; = 27r o for the
casée in which the bubble detaches from the edge of a microscopic recess, with the inertial force of the reaction
of the liquid, Fg = (7T/3),B4p [1]. From the condition ¥, = FR we find the boundary value of the growth modulus
Bx and then the boundary value of the temperature difference AT, (the dependence of 8 on AT for the cryogenic
liquids is determined from the equation given by Labuntsov et al. [2], while that for water and ethanol is deter-
mined from the Cole —Shulmann equation [17]). Comparing the difference AT, with the pressure dependence of
the temperature difference for the boiling of certain liquids [18, 19], we find the boundary between the quasi-
static and dynamic detachment regions in terms of the pressure P, (or in terms of the reduced pressure my =
P /Pg). The calculated results are shown in Table 1. Here the values of 7y, ;, were determined for heat flux
densities q corresponding to the beginning of boiling, while the values of my are determined for g =~ 0.5q4p.
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TABLE 1. Boundary Values of the Reduced Pressure for Various

Substances
| | | | l i i
Substance He i H, [ Nob G ‘ CHOH | H,0 ! Average
! i ! |
T, min \ 003 . 0,05 | 0,03 ‘ 0,02 0,02 | 0,015 ] 0,03
Ty ;0.1 0,1 | 0,06 [ 0,04 | 0,3 | 0,03 | 0,06
]

| : {
The boundary found between the quasistatic and dynamic detachment regimes for vapor bubbles, and thus the
boundary between "high* and "low" pressures, must obviously be refined.

The values of ry; which we used in calculating w, are apparently near the minimum possible values for
active vapor-formation centers [9]. For example, for water at atmospheric pressure and with AT ~ 10 deg,
estimate (9) gives ry; ~ 7pu. The values of r actually observed under these conditions are on the order of 30 u
[20. 21]. On the basis of the results shown in Table 1, however, we can assume that the results obtained for
quasistatic detachment are applicable at = > 0.1, If, on the other hand, we have 7 < 0,01, then the vapor bub-
bles detach in the dynamic regime. In the latter case, and in the interval 0.01 < 7 < 0.1, the detachment di-
mensions can be estimated by the procedure of [1].

NOTATION

B, growth modulus; p, p", densities of liquid and vapor; 8, wetting angle of liquid; o, surface-tension
coefficient; g, acceleration due to gravity; rq, vq, detachment radius and detachment volume of bubble; ry,
base radius of microscopic recess  (or radius of the aperture in the plate); b'l/z, scale linear dimension; Ry,
Vg, dimensionless detachment radius and detachment volume; R, dimensionless radius of microscopic recess;
Tg, saturation temperature; AT, temperature difference; L, latent heat of vaporization; P, P,, 7, vapor pres-
sure, critical pressure, and reduced pressure; Bx, 4T«, Py, 7x. boundary values of the growth modulus, the
temperature difference, the pressure, and the reduced pressure; 9oy, first critical heat flux density.
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