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The  c r i t i c a l  bubble  d i m e n s i o n s  f o r  d e t a c h m e n t  f r o m  a s m o o t h  s u r f a c e  and f r o m  the edge of a 
r e c e s s  a r e  c a l c u l a t e d .  The  b o u n d a r y  of the q u a s i s t a t i c  r e g i m e  is e s t i m a t e d  on the b a s i s  of the 
p r e s s u r e .  

One of the m o s t  i m p o r t a n t  p r o b l e m s  in the p h y s i c s  of bo i l ing  is  that  of d e t e r m i n i n g  the s i ze  of v a p o r  
bubb l e s  as  they de t ach  f r o m  the h e a t e r .  The  d e t a c h m e n t  s i ze  and the na tu re  of the d e t a c h m e n t  depend  on the 
magn i tude  of the i n e r t i a l  f o r c e s  in c o m p a r i s o n  wi th  the f o r c e s  due to g r a v i t y  and s u r f a c e  t ens ion .  The i n e r t i a l  
f o r c e s  a r e  g o v e r n e d  p r i m a r i l y  by the r a t e  of g rowth  of the bubble  s u r f a c e  a r e a  and a r e  p r o p o r t i o n a l  to/34 [1]. 
Since  /3 in tu rn  i s  p r o p o r t i o n a l  to the m - t h  p o w e r  of the J a c o b i  n u m b e r  (0.5 ___ m _< 1) [2], and the J a c o b i  n u m -  
b e r  is  i n v e r s e l y  p r o p o r t i o n a l  to p " ,  a t  high p r e s s u r e s  the r a p i d  i n c r e a s e  in p" c a u s e s  /34 to b e c o m e  e x t r e m e l y  
s m a l l .  Unde r  these  cond i t i ons  we can  n e g l e c t  the inf luence  of i n e r t i a l  f o r c e s  on the bubble  d e t a c h m e n t .  The 
bubble  g rowth  is a s s u m e d  to be q u a s i s t a t i c ,  and the d e t a c h m e n t  is  a s s u m e d  to b e g i n a t t h e  i n s t an t  the e q u i l i b r i -  
um f r e e  s u r f a c e  of the l iquid b e c o m e s  uns t ab l e .  

D e s p i t e  the i m p o r t a n c e  of the p r o b l e m  of the d e t a c h m e n t  of bubb l e s  du r ing  bo i l ing ,  i t  has  r e c e i v e d  l i t t l e  
s tudy ,  even  in the c a s e  of q u a s i s t a t i c  bubble  g rowth .  The  a v e r a g e  d e t a c h m e n t  r a d i u s  r d = (3v d / 4 @ / 3  is u sua l ly  
e s t i m a t e d  f r o m  the equa t ion  [3] 

o.oi (9--9")g 0 (r d ~- 0.01 b-~/20; b = ( p -  p")g/(~). (1) 

T h i s  equa t ion  was  d e r i v e d  by F r i t z  [4] fo r  a bubble  s i t t i ng  on a smoo th  h o r i z o n t a l  p la te ;  F r i t z  d e t e r m i n e d  v d 
a s  the m a x i m u m  bubble  vo lume  (for a g iven  value  of 0) and u sed  the t a b l e s  of B a s h f o r t h  and A d a m s  [5] to c o n -  
s t r u c t  the func t ion  V d (0) fo r  0 ~ 59 ~ (Vd = vdb3/2). We note that  Eq. (1) b e c o m e s  u n a c c e p t a b l y  i n a c c u r a t e  a t  
0 > 125 ~ a c c o r d i n g  to the r e s u l t s  of [4]. F u r t h e r m o r e ,  the a p p l i c a b i l i t y  of (1) f o r  ~ < 59 ~ has  y e t  to  be p roved .  

N e s i s  and K o m a r o v  [6] p r o p o s e d  an a p p r o x i m a t e  a n a l y t i c  so lu t ion  of th is  p r o b l e m  f o r  s m a l l  0 on the b a s i s  
of a s tudy of the b e h a v i o r  of the b a s e  r a d i u s  X a s  a funct ion of the bubble  he igh t  h. They  a s s e r t e d  that  fo r  0 < 
70 ~ the cond i t ion  d N / d h  = -~r b e c o m e s  s a t i s f i e d  upon the a p p e a r a n c e  of an in f l ec t ion  poin t  of the g e n e r a t r i x  
of the bubble  s u r f a c e  at  the b a s e ;  th is  cond i t ion  was  adopted  a s  the s t a b i l i t y  t h r e s h o i d .  A n a l y t i c  and n u m e r i c a l  
c a l c u l a t i o n s  in [10] showed that  the in f l ec t ion  point  does  not co inc ide  with  the po in t  a t  which  we have  d X / d h  = 
- < .  F u r t h e r m o r e ,  the s a t i s f a c t i o n  of the cond i t i on  d X / d h  = - ~  canno t  be judged a r i g o r o u s  c r i t e r i o n  fo r  the 
toss  of s t a b i l i t y ;  a s  fo l lows  f r o m  a n u m e r i c a l  so lu t ion  of the v a r i a t i o n a l  p r o b l e m ,  the i n s t a b i l i t y  o c c u r s  upon 
the a p p e a r a n c e  of an in f l ec t ion  po in t  on the p r o f i l e ,  but  b e f o r e  the t i m e  a t  which the condi t ion  d X / d h  = - ~  
b e c o m e s  s a t i s f i e d  [10, 14]. 

F o r  l iqu ids  wi th  v e r y  s m a l l  we t t ing  a n g l e s  (e .g. ,  for  c r y o g e n i c  l iqu ids ,  fo r  which  0 ~ 0~ Eq. (1) p r e -  
d i e t s  v a l u e s  of r d which  a r e  f a r  too low. It is  r e a s o n a b l e  to a s s u m e  tha t  the v a p o r  bubble  does  not de t ach  f r o m  
the s m o o t h  wa l l  of the h e a t e r  but  f r o m  the edge  of a m i c r o s c o p i c  r e c e s s  [1]. The  m o s t  l ike ly  p l ace  fo r  the 
nuc l ea t i on  of a bubble  is  a t  the bo t tom of a m i c r o s c o p i c  r e c e s s .  As the bubble  g r o w s ,  the ba se  of the bubbie  
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Fig. 1. Detachment models, a) Bubble on smooth plate; b) at m i -  
croscopic  recess ;  c) on plate with c i rcu la r  aper ture .  

(more precise ly ,  the wetting line, i.e., the line of intersect ion of the free surface with the heater)  moves 
along the lateral  surface of the recess  [7]. The shape of the microscopic  recess  (the most  real is t ic  model is 
a conical surface [7]) is important  only for the nucleation and growth of the bubble within the recess .  Using 
the methods and resul ts  of [8], we can easily reach the conclusion that the detachment of a bubble f rom a 
lateral  surface of a cone with the very smal l  base corresponding to real  microscopic  r ecesses  is impossible. 
(According to es t imates  in [9], the size of microscopic  r ecesses  is on the order  of 1-100 p.) At a cer tain in- 
stant, accordingly,  the bubble must settle on the edge of the microscopic  r eces s  (Fig. lb). After this occurs  
(Fig. lc ) ,  the bubble shape changes in different manners ,  depending on the rat io of 0 and R 0 (tt 0 - r 0 • 
V (p - p  ")g/~). The detachment can occur e i ther  f rom a smooth wall or f rom the edge of the recess  [10]. 

Buevich and Butkov [11] took up the problem of finding the cr i t ical  volume of a bubble which detaches 
f rom the edge of an aper ture  (the bubble volume in this case was taken to be the volume founded by the free 
surface and the horizontal  plane of the aperture) .  Working by analogy with [4], they determined the detachment 
volume as the maximum volume for  the equilibrium states of the bubble, for which the wetting line has a fixed 
radius r0, equal to the aperture radius. They constructed the function Vd(R0) for  R 0 _< 2.5. 

It should be noted here  that the method used by Fr i tz  leads to a co r r ec t  solution of the problem he 
dealt with, since in this case only the ax isymmetr ic  perturbations leading to bubble detachment are important 
[8], and the instant at which these perturbations cause instability coincides with the instant at which the bubble 
reaches  its maximum volume (for a given value of 0; this result  was shown rigorously in [12]). At the same 
t ime, the method used by Buevich and Butkov [!1] is valid only for R0 -< 3.24, at which ax isymmetr ic  per tu rba-  
tions are  dangerous,  and this method leads to incor rec t  resul ts  if 3.24 < R 0 _< 3.83, in which case the instabil-  
ity due to nonaxisymmetr ic  perturbat ions occurs  ea r l i e r  [10] (if R 0 > 3.83, the bubble is always unstable). 

Fu r the rmore ,  the approximation of the resul ts  by the function Vd = 0.65R0 used in [11] is c lear ly  e r -  
roneous. 

Slobozhanin and Tyuptsov [I0] numerically determined the bubble shape during slow growth up to the in- 

stant at which detachment begins, and they found the detachment volume (we emphasize that "detachment Vol- 
ume" here, as in [4, 11], is understood to be - not the volume of the bubble after it has detached - but the vol- 

ume of the bubble at the beginning of detachment, i.e., at the instant at which the instability occurs; the volume 
after  detachment probably cannot be found exactly without solving the dynamic problem). They dealt with the 
cases  of a smooth horizontal  plate Wig. la) and a plate having a c i rcu la r  aper ture  (Fig. lc). For  the second 
case they analyzed the conditions under which the detachment occurs  f rom the smooth surface and from the 
edge of the aper ture .  In solving the detachment problem they used the methods of [8, 13, 14]. They constructed 
the functions Vd (R0) for detachment f rom the edge of the aperture  and Vd (0) for detachment f rom the smooth 
surface.  

In the present  paper  we calculate the interval of small  wetting angles and aperture  radii given roughly 
in [10], and we find simple equations to approximate the numerical  resul ts  found in the present  paper  and, 
part ial ly,  in [10]. Then it becomes possible to determine the detachment sizes of bubbles for various liquids 
(including cryogenic  liquids) by adopting as a model for  a flat heater  surface a plate with a c i rcu lar  aper ture .  
Fu r the rmore ,  we use the p ressu re  to est imate the boundary between the quasistat ic  and dynamic regimes  for 
bubble growth and detachment. 

We introduce a cyl indrical  coordinate sys tem r, q~, z with origin at the c res t  of the bubble and with z 
axis pointing downward, along the direct ion of the gravitat ional  force (Fig. 1). By virtue of the axial symmet ry  
of the problem, in order  to determine the bubble shape at some instant it is sufficient to determine the shape 
of the genera t r ix  - the line of intersect ion of the bubble surface with the ~ = const half-plane. We call this 
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Fig. 2. Dimensionless  bubble detachment radius Rd as a function of the 
wetting angle 0% 

Fig. 3. Dimensionless  detachment radius R d as a function of the d i -  
mensionless  radius of the r eces s ,  R 0. 

genera t r ix  the "equilibrium line" (Fig. 1). Trans forming  to dimensionless  variables ,  we find that the equi-  
l ibrium line is described in the paramet r ic  form R(S), Z(S) by the sys tem of equations [8] 

R" = - -  Z '  ( - - . Z  + C - -  Z ' / R ) ,  Z" -= R '  ( - -  Z - -  C - -  Z ' / R ) ,  (' = d !dS)  (2) 

with the inert ial  conditions 

R (0) = Z (0) = Z' (0) - ' 0 ,  R' (0) --- 1. (3) 

The solutions of problem (2), (3) form a s ing le -pa ramete r  family of integral  curves  (the pa ramete r  is the 
quantity C). The equilibrium line is governed not only by the value of the pa ramete r  C, which governs the shape 
of the integral  curve,  but also by the position of the final point S = $1 and the point of contact on this curve,  A 
(Fig. 1). These two quantities, which are not known at the outset, can be found from the condition for  a given 
bubble volume (at a given instant) and from the condition for a given wetting angle, 

'~ (S1) = ~'~ - -  0,  (4)  

if the bubble is sitting on a smooth surface,  or f rom the condition 

R (S) = Ro, (5) 

if the bubble is in contact  with the edge of an aperture.  

The bubble can be in contact with the edge of the aperture  only if [13] 

? ($1) -<~ a - -  O. (6) 

To study the stability of the bubble we begin with the principle of a minimum potential energy of the system. 
The problem reduces to one of determining the sign of the smal les t  eigenvaiue of a linear boundary-value prob-  
lem for  the normal  component N(S, m) of the perturbations of the free surface [8, 14]. The coefficients in this 
problem depend on the shape of the bubble surface (and, of course ,  on the physical  proper t ies  determining 
the equilibrium). 

The boundary conditions for this problem take different forms,  depending on whether the bubble is in 
contact with a smooth wall or with the edge of an aper ture :  in the f i rs t  case,  the boundary condition expresses  
the conservat ion of the wetting angle during tolerable perturbat ions;  in the second case,  it expresses  the con-  
servat ion of the contact  line at the edge of the aperture.  Accordingly,  the detachment volumes will be different 
in these two cases.  

Using the specified procedure ,  we numerical ly determined the detachment sizes for bubbles in contact 
with the smooth surface of a plate for small  wetting angles (the extreme value was 0 = 3~ On the basis of these 
resuIts  and the resul ts  of [10] we were  then able to construct  the function Rd(O ) shown in Fig. 2. Comparison 
of this function with Eq. (1) shows that over the interval 3 ~ _< 6 _< 125 ~ Eq. (1) approximates the exac t  resul ts  
within a relative e r r o r  no larger  than 5%. In the same interval of wetting angles, this function is described 
more  accurate ly  (within 1.5%) by 

( V ) Re = 0.01060 r d = 0.01060 o g ( p _  p,,) �9 (7) 
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Fig. 4. Boundary between the two detachment regimes .  
1) Detachment f rom smooth surface;  2) detachment f rom 
edge of recess .  

Fig. 5. The par t  of the boundary in Fig. 4 for  smal l  va l -  
ues of R 0 and O. 

Fu r the rmore ,  for  the case of detachment f rom the edge of a recess  we numerical ly  found the detachment d i -  
mensions for smal l  values of R 0 (the smal les t  value of R 0 for which calculations were car r ied  out was 1.8- 
10"4). Figure  3 shows the function Rd(R0), in the plotting of which we also used the resul ts  of [10]. 

Over the interval  1.8- 10 -4 _< R 0 _< 0.5 this function can be approximated by 

Rd---- 1.105 q r a =  1.105 g(gr~ . (8) 

The e r r o r  of this approximation is less than 2.5%. 

How does a bubble detach from a heater  with a recess  - f rom the smooth surface or f rom the edge of the 
recess?  Figure 4 gives us an answer  to this question. In this figure, the boundary between the region of physi -  
cal  pa ramete r s  in which the detachment occurs  f rom the edge of the r ecess ,  2, and the region in which de-  
tachment occurs  f rom the smooth surface,  1, is shown on the (R 0, 0) plane. Figure 5 shows the par t  of the 
boundary for smal l  values of R 0 and 0, which is a par t icular ly  interesting situation. 

We see, in par t icular ,  f rom these f igures that for cryogenic liquids, with extremely smal l  wetting 
angles,  Eqs. (1) and (7) are  inapplicable, since in these cases  we are  dealing with detachment f rom m i c r o -  
scopic r ecesses .  (This asser t ion  is confirmed by the experimental  resul ts  of [15], which showed that we have 
rd ~ g-I /3 for liquid oxygen, in agreement  with Eq. (8).) 

These resul ts  can be used to analyze boiling if we know the average radius of the microscopic  recess ,  r 0 
and if we have determined the boundary of the quasistat ic  regime for the detachment of vapor bubbles during 
bubble boiling. Fo r  definiteness we assume that the radii  of the active vapor- format ion  centers ,  r 0, are equal 
to their  most  probable value [16]: 

4~T~ 
r~ Lp"AT (9) 

The boundary between the quasistatie and dynamic detachment reg imes  can be determined by comparing the 
sur face- tens ion  force ,  which can be writ ten (within accuracy  sufficient for  our purposes) as Fa  = 2 ~r0~ for the 
case in which the bubble detaches f rom the edge of a microscopic  r ecess ,  with the inert ial  force of the reaction 
of the liquid, F R = 0r/3)fl4p [1]. F r o m  the condition F~ = F R we find the boundary value of the growth modulus 
fi. and then the boundary value of the temperature  difference AT.  (the dependence of ~ on AT for the cryogenic 
Uquids is determined f rom the equation given by Labuntsov et al. [2], while that for  water  and ethanol is de t e r -  
mined f rom the Cole -Shulmann equation [17]). Comparing the difference AT, with the p ressu re  dependence of 
the temperature  difference for  the boiling of cer ta in  liquids [18, 19], we find the boundary between the quas i -  
static and dynamic detachment regions in te rms  of the p ressu re  P .  (or in t e rms  of the reduced p ressu re  u. = 
P / P c ) .  The calculated resul ts  are  shown in Table 1. Here the values of ~. min were determined for heat flux 
densit ies q corresponding to the beginning of boiling, while the values of u, are  determined for q ~ 0.5qcr. 
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TABLE 1. Boundary Values of the Reduced P r e s s u r e  for  Various  
Substances  

Sllb$1~arlar He H 2 N= 02 C2HsOH H=o ] Awrage 

~, mill O, 03 
0, I 

0,05 
0,1 

0,03 
0,06 

0,02 
0,04 

0,02 
0,03 

0,015 
0,03 

0,03 
0,06 

The boundary found between the quas is ta t ic  and dynamic de tachment  r e g i m e s  fo r  vapor  bubbles,  and thus the 
boundary between "h igh '  and "low" p r e s s u r e s ,  mus t  obviously be refined. 

The values of r 0 which we used in calculat ing ~r. a re  apparent ly  near  the min imum possible  values for  
act ive vapo r - fo rm a t i on  cen te r s  [9]. F o r  example ,  for  wa te r  at a tmospher i c  p r e s s u r e  and with AT ~ 10 deg, 
e s t ima te  (9) gives r0 ~ 7/~. The values of r 0 actually observed under these conditions a re  on the o rde r  of 30/~ 
[20. 21]. On the bas i s  of the resu l t s  shown in Table  1, however ,  we can a s sume  that the r e su l t s  obtained for  
quas is ta t ic  de tachment  a r e  applicable at rr > 0.1. If, on the other hand, we have ,-r < 0.01, then the vapor  bub-  
bles  detach in the dynamic reg ime,  In the la t ter  case ,  and in the in te rva l  0.01 < 7r < 0.1, the detachment  d i -  
mensions  can be es t imated  by the p rocedure  of [1]. 

N O T A T I O N  

/3, growth modulus; p, 0",  densit{es of liquid and vapor;  ~, wett ing angle of liquid; a, su r f ace - t ens ion  
coefficient;  g, acce le ra t ion  due to gravi ty ;  rd,  Vd, de tachment  radius  and detachment  volume of bubble; r0, 
base  radius  of mic roscop ic  r e c e s s  (o r  radius  of the ape r tu re  in the plate); b -1/2, scale  l inear  dimension;  Rd, 
Vd, d imens ion less  de tachment  radius  and detachment  volume; R0, d imens ion less  radius  Of mic roscop i c  r e c e s s ;  
Ts ,  sa tura t ion  t empe ra tu r e ;  AT, t e m p e r a t u r e  difference;  L, latent heat of vaporizat ion;  P,  Pc,  7r, vapor  p r e s -  
sure ,  c r i t i c a l  p r e s s u r e ,  and reduced p r e s s u r e ;  p . ,  AT. ,  P . ,  ~,.  boundary values of the growth modulus,  the 
t e m p e r a t u r e  d i f ference ,  the p r e s s u r e ,  and the reduced p r e s s u r e ;  qc r ,  f i r s t  c r i t i ca l  heat  flux density.  
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